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OSCILLATIONS GENERATED IN THE COMPRESSION OF A 

VISCOELASTIC BODY 

G. I. Burd6 and T. M. Burd6 UDC 532.5:532.135 

Studies of the various kinds of instability that evolve in processes of deformation of 
viscoelastic materials have been reported in a large number of papers (see [i] and [2-7]). 
Mainly elongational flows of incompressible liquids have been investigated in these studies. 
As a rule, the inertial terms in the equation of motion are neglected in the analysis of sta- 
bility. 

It is shown below that in deformations of compressible viscoelastic bodies another type 
of instability is possible, namely oscillations induced by the bulk elasticity of the mate- 

rial and driven up in hydrostatic compression of the sample as a result of inertial interac- 
tion of the disturbances with the main flow. The conditions for growth of the oscillations 
are determined from the linearized small-perturbation equations; on the basis of a nonlinear 
analysis, the nature of the excitation is investigated, and the amplitude of the oscillations 
is determined. 

Calculations are carried out for the case of uniform planar deformation and ideally 
smooth and rigid bounding surfaces. These assumptions clearly do not play a vital role in 
the investigated instability mechanism. 

i. Let us consider a rectangular compressible viscoelastic body (Fig. i) bounded by 
smooth rigid planes. The planes xl = +L(t) move symmetrically relative to one another with 
a velocity U = dL/dt, and the planes x2 = • do likewise with a velocity V = dR/dt. The 

velocities U and V can be either positive (extension) or negative (compression) and are as- 
sumed to be constant, so that the dimensions of the sample vary with time according to the 
linear law 

L = L o - ~  Ut, B = B o +  Vt. (1.1) 

The equations describing the isothermal flow of the sample material have the form (re- 
peated indices signify summation) 

Op/Ot + 8(pvh)/az k = O; ( 1 . 2 )  

Perm. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 
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p(aui/Ot -I- vhOvi/Oxh) = Ogh/OXk, ( 1 . 3 )  

where p is the density, v i denotes the components of the velocity, and Oik are the compo- 
nents of the stress tensor. 

The rheological equation of the material is assumed to have the form 

~U = Kekh6iJ-~ ~ii, (1.4) 

where K is the bulk modulus and eij are the components of the Almansi strain tensor [8], 

which are related to v i by the equations 

OeulOt -[- vhOeu/Ox k + ekjOVh/OXi ~- eihOv~/Oxj = (t/2)(OvJOx~ -j- Ovj/Oxi). ( 1 . 5 )  

The d e v i a t o r i c  s t r e s s e s  T i j  o b e y  t h e  e q u a t i o n  (Maxwe l l  m o d e l )  [9]  

~ij ~- ~5~u/St = 2 ~ u .  ( 1 . 6 )  

Here ~ij is the deviatoric part of the strain-rate tensor: 

i ~Or{ Ovj] t Ov h 

is the shear viscosity, k is the relaxation time, and the symbol 5/6t denotes the Oldroyd 

convected derivative. The calculations are carried out for the two cases in which (1.6) 

incorporates either the upper convectional derivative 

5~j 0 ~  O~{j ~v i 8vj (1.8) 
5t =--~Y- - ] -vk 'ox  h ox h ~---~m, 

or the lower convectional derivative 

(1.9) 

Hereinafter all intermediate calculations refer to the case (1.8), but the final results are 
given for both cases. 

For planar deformation, relations (1.2)-(1.8) are reducible to a system of nine equa- 
tions for the functions D, v~, v~, 7~, T~, T~, e~, e~, e~. These functions must satis- 

fy the boundary conditions 

vl(L, x2, t) : U, v~(~, B,  t) = V, ( 1 . 1 0 )  
~z(L,  x~, t) = 0, ~ ( Q ,  B,  t) = 0 

and the symmetry conditions 

v~(O, x2, t) = O, v2(z~, O, t) = O, 
v~(x~, x~, t) = - - v ~ ( - - z .  x~, t), v~(x.  x2, t) = v~(x~,~ --z~,  t), ( 1 . 1 1 )  

v~(zl, x2, t) = v~(--xl ,  x2, t), v~(xl,~ x2~ t) = --v~(xl ,  --x~, t). 

Equations (1.2)-(1.8) subject to conditions (i.I0) and (i.ii) admit a solution corre- 

sponding to uniform deformation of the sample: 

z2 (I .12) po c ~o = u L - ~ ) ,  ~o = v R {o ~ = ~ (t), 
= L (t) n (t)' ' 

ei ~ : e~j (t), 

842 



o 
is the density at the initial time). The quantities r~j and eij are where C = 0oLoRo (Po 

given by the conditions 

u u V V 
,~t § Z-Z-- e~~ = -L- ,  dt § 2 ~ e ~ e ~  = 0,  

~2-- R' (1.13) 

v)0 
X-~7-§ I--2X ~l=-~ 2 ~-Z-§ I--2~-~ ~2=-U~ 2 R L B ' L ' 

2. We now analyze the stability of the uniform deformation (1.12) under small distur- 
bances. It will be helpful to transform to the new set of variables (x, y, ~): 

x = x ] L ( t ) ,  y = x J B ( t ) ,  ~ = t ,  

where ~ has the significance of explicitly occurring time. The derivatives with respect to 
xl, xi, and t in (1.2)-(1.8) are expressed in terms of the new variables as follows: 

o i a o t a a o u ~ v a 
o~:-~ = 'L-" ~ '  o~---~ = R o ~ ,  ot = o~ L z o~ --h- v -5-F" 

It is also convenient, in place of p, to use the variable r = pLR, which has a constant 
value for the uniform deformation (1.12). 

We write the solution of the system (1.2)-(1.8) in the form 

r=C+(I) ,  v l=Ux+ul ,  v~=Vy+ui,  ( 2 . 1 )  

0 e~ + Eij .  ~0:'~0§ e i j :  

After linearization with respect to the small disturbances we arrive at the equations 

0{ ~-C -f~x -[- R -~--g/=0; ( 2 . 2 )  

/0z* 1 U 0Tll 0T12. 

v 
(2.4) 

Tn+X( o% L Tll~--2-ETn. :-UN L a2 R ~7' (2.5) 

(OTis 2 o Ou~ V } 2 2 0 u  2 10u~ 1 
Tz~+~'['-b--~ R '~-b~-y --2"~-T~2_ : " ~ - ~ l  R 8V L 7~'z]; ( 2 . 6 )  

OEll 2 0 aUl U I OUl. ( 2 . 8 )  
o-'-~ + -'L- en ~ + 2 -L- Ell  = "-L- -b-~'~ ' 

OE~ 2 e o Ou~ ~ V t Ous. 
O~ +"R-- "~~V T 2 " R  - E ~ 2 =  R Oy' (2.9) 

( 2 . 10 )  

We o b t a i n  the  boundary  c o n d i t i o n s  f o r  Eqs.  ( 2 . 2 ) - ( 2 . 1 0 )  by s u b s t i t u t i n g  e x p r e s s i o n s  
(2 .1 )  i n t o  ( 1 . 1 0 ) ;  t hey  c o r r e s p o n d  to ze ro  normal  components  o f  the  d i s t u r b a n c e s  of  t he  v e -  
l o c i t y  and the  t a n g e n t i a l  s t r e s s e s .  The v e l o c i t i e s  a l o n g  the  b o u n d a r y  and the  normal  s t r e s s e s  
a t  the  b o u n d a r i e s  can  be a r b i t r a r y  in  t h i s  c a s e ,  growing w i t h  t h e  d e v e l o p m e n t  of  i n s t a b i l i t y .  

The s o l u t i o n  o f  the  sys tem ( 2 . 2 ) - ( 2 . 1 0 ) s u b j e c t  to  the  b o u n d a ry  c o n d i t i o n s  and symmetry 
c o n d i t i o n s  has  the  form 

u 1 = a~(~) sin z~nx. cos gray ,  u~ = a~(~) cos z m x .  sin a m y ,  

{(I), Tll, r~e, En ,  Ei~} = {F(~), S~(~), S~(~), [~(~), [~(~)} cos nnx.cos  z~mg, ( 2 . 1 1 )  
{Tl~, ' El~ } -- {So(~), [~a(~)} sin zmx.sin n m g .  

The substitution of expression (2.11) into (2.2)-(2.10) yields a system of ordinary differ- 
ential equations for the amplitudes of the disturbances ~i, ~z, 81, ~2, S~, $2, S~ [Eqs. 
(2.2) and (2.10) are separable for the quantities F and B~]. The analysis of the solutions 
of this system is simplified if it is confined to similarity-preserving deformations: U/V = 
Lo/Ro (U/L = V/R). Then, as is evident from (1.13), 
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o ~C~176 -dF-[ -2-s  - e  = ' T '  e ~  -~  e2~ = -  e ~ o de  ~ U o U 

X --3-/- + I - - 2 L  "~~ : T ~ I  T .  

The solutions of these equations are written as follows after transformation to the new in- 
dependent variable G = L/Lo: 

e ~ == I -- ~-~ , 

.~o=.~_f A~G%-A~ lnG+~ ~-,,n.T + G ~ ( A + i ) e a ( a - v ) - - ( l - } - A G )  ' (2 12) 

A =  L~ 
~U" 

The equations for the amplitudes of the disturbances for U/L = V/R can be reduced to a sys- 
tem of three equations for the quantities 

S = ~ n i ( V / U ) S ~  + ~m~(U/V)S~  - -  2 ~ m n S ~ ,  

which, after the substitution in explicit form of the expression for e ~ is written in the 
form 

U 

~ u UL~ 
d( + 2 -L-,~ = - -~-  a; (2.14)  

2 U U S) : 2 ( ~ o  + T ~O_Z_ l~a ' (2.15) 

where 

l~ = a~n~(V/U) + a~m~(U/V). 

The numerical solution of Eqs. (2.13)-(2.15) shows that under definite conditions the 
time variation of the disturbances has an oscillatory behavior. An analytical investigation 
of the conditions for the onset of oscillations is readily carried out on the assumption that 
the period of the oscillations is much smaller than the characteristic rise time of the main 
flow Lo/IU I. Then, in accordance with the notions of the method of two-scale decompositions 
we introduce the "slow" time t' = tlUl/Lo and the "fast" time ~ = ~t (~ is the frequency of 
the oscillations, ~ >>IUI/Lo), writing the time derivative as the sum of the partial deriva- 
tives with respect to the variables t' and @: 

a =~a+-6~ I U I  o (2.16) 
a--~ L o Ot" 

The amplitudes of the disturbances ~, B, S are, by assumption, functions of the fast time 

only (a/#~ ~ ~o/a}), whereas according to (i.i) and (2.12) the quantities L, R, T ~ depend only 
on the slow time [L/Lo = i • t', R/Ro = 1 t (Lo/Ro)t', T ~ = T~ Consequently, L, R, 
T ~ can be regarded as constants in relation to differentiation with respect to ~ (or ~), and 
the system (2.13)-(2.15) is reducible to a single equation for ~ (the equations for B and S 
have the same form): 

~ ~--~- + + + + 

(2.17) 

+ L-6~-+-~r -+ L~ L \-6~- +7~/_ ~=o,  

where we have introduced the notation H = IT ~ + 2~/3. 

We first consider the case I = 0, when elasticity effects occur only in connection with 
bulk deformations of the material and the equation for ~ acquires the form 

~:~ + ~ + Tj~ + ~-5~- + -~- + ~) ~-- ~ 
(2.18) 
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The solution of Eq. (2.18) can be written in the form 

= ae-8~ cos (~ ~ + ~)~ 

where 

6 = 2~IIU3C + 3U/2L, 

~,  KI~L~o 2U ~ 8~lUl 2 i (4~12 3UL )~" 
-- CL ~ ~ - - ~ - +  3CL- - . - -4 - \  3C + ( 2 . 19 )  

For ~2 > 0 the time variation of the disturbances has an oscillatory behavior. In the case 
of extension of the sample (U > 0) the oscillations are always damped (6 > 0), whereas in 
compression (U < 0) they can grow. The oscillatory growth of the disturbances (6 < 0) be- 
gins at the time when L falls below a certain critical value 

L ,  = 9 I U I C/4~ll ~. 

It is evident from (2.19) that the assumption of a rapid time variation of the distur- 
bances (~>>IUl/Lo), used in the derivation of (2.17) and (2.18), is valid for fairly large 
values of K. Assuming that the characteristic viscous-damping time C/~ is of the same order 
of magnitude as the characteristic time of the main flow Lo/IU], under the condition 

K >> CU2/L~o (2 .20 )  

we can represent the expression (2.19) for the frequency of the oscillations in the form 

f~ = (KL~12/CL2) ~/2 [t @ 0 (r (2 .21 )  

where the quantity 

= CU2/KL~ (2.22) 

characterizes the order of smallness of the discarded terms [by (2.20) we have ~ << i]. The 
ratio of the oscillation period 2~/~ to the characteristic time of the main flow for large 
values of K is of the same order of smallness ~ (fast oscillations). 

Going to the general case I # 0, we investigate the solutions of Eq. (2.17) in the 
large-K limit (@ << i). We first determine the roots h i of the characteristic polynomial, 
assuming that the characteristic viscous-damping time, the relaxation time, and the charac- 
teristic time of the main flow are of the same order. Then the characteristic polynomial 
corresponding to (2.17) can be written 

L [t nu 0 (t~)] O, (2.23) -t- a l  = , 

where 

~1 i@--0- f- ; a~--  c U 2 " a a - - - - - - 7 \ - - 0 - f - - 2  

Noting that al ~ i, ~2 ~ i/~, 63 ~ i/@, we write the expression for the pair of complex-con- 
jugate roots of the polynomial in the form 

ha,2=- L- 2a 2 +0(,) +__~[~f~d-O(,) �9 (2.24) 

After substituting the expressions for ~i, 62, 63 we arrive at the equation (correct to terms 
of order 4) 

h l , 2  = - -  3U/2L -4- i ( Kl2L~/CL2) 1/2. 

Here the oscillation frequency is again described by (2.21), and the oscillations grow only 
in the case of compression of the sample for any values of L. 

Threshold effects for growth of the oscillations can also be observed for % ~ 0 if the 
viscosity ~ is large enough for the viscous terms in (2.17) to be the same order as the terms 
containing K. Under the condition (2.20) and for % ~ Lo/IU[ [where T ~ ~ n/l, see (2.12)] it 
is necessary that 

(C/~I)/(Lo/IU I) --- * ( 2 . 2 5 )  
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(the viscous-damping time is much smaller than the characteristic time of the flow). Under 
conditions (2.20) and (2.25) the characteristic polynomial again has for form (2.23), where 

L l ~ ( KL~ 2HLi~ 
t-Ur- )' 

4HL2 ] 
a3 = -( -  1_ u + 

From expression (2.24), after certain transformations, we obtain an expression for the pair 
of complex-conjugate roots: 

- -  3%KUL~oi~.KLioL-Jr- 2HL 3+ 4HL a(U/L -- t1~) ~ K12L~ 2 )11~ hl,~ ---- ~- i ~- ~ �9 (2.26) 

The growth (decay) rate in (2.26) can change sign, i.e., for large viscosities, as in the 
case X = 0, the oscillations can grow only after compression to some critical length L,. 
An expression for L,, which is determined from the condition that the real part of (2.26) 
vanishes, cannot be written out explicitly, because L enters into (2.26) in a complex way 
through m o [see (2.12)]. The corresponding transcendental equation is solved numerically 
by the method of chords. 

In the ensuing discussion it is useful to transform to dimensionless quantities. We 
use the dimensionless parameters 

w = %IUIILo, B - -  ~l/poLolUh, D = K/9o U~ (2.27) 

and the quantities 

G = L/Do,  co = ~LolIUI, ,  O = "~~ ( 2 . 2 8 )  
The equation governing the threshold length L, (or G,) and the expression for the frequency 
of the oscillations at the threshold are written in the following form for U < 0 [these ex- 
pressions are obtained from the dimensionless equation (2.26) when the real part of h is 

equal to zero): 

3D - -  2BG~, (O, .-F 2/3W) (i -F V , I W )  = O, (2.29) 

co~ = 1 ~ [DIG~, + 2B ( 0 ,  + 213W)]. 

Figure 2 shows the threshold length G, as a function of the dimensionless relaxation 
time W (Weissenberg number) for U = V and n = m = 1 for B/D = i, 5, i0, 20 (curves 1-4 re- 
spectively). It is seen that as the relaxation time is increased the value of G, approaches 
unity (L, + Lo), so that for large W the oscillations are driven up for all L~ Lo. Increas- 
ing the viscosity B, as expected, pulls back the threshold for the inception of growing os- 

cillations. 

We also give an expression for the pair of complex-conjugate roots of the characteristic 
polynomial [analogous to (2.26)] in the case where the lower convectional derivative (1.9) is 
used in (1.6): 

- -  3%KUL~ -- 2HL ~ (3U/L q- ll~) / KliL~ 2H12"111~ 
= 2XKL L + zL • i / - T V -  + --U-Z) �9 

Here H = - - X m  ~ + 2q/3, and <o is calculated from the expression 

q;o 2~1 t L,~ ( 2 . 3 0 )  3)~ Gi-~ - [ (A - -  1) e Ao--G) - -  (AG -- t )] ,  A = Z--U-" 

The foregoing analysis of the conditions for the generation of oscillations was based 
on Eq. (2.17), which is valid for describing the behavior of the disturbances only at high 
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oscillation frequencies, which correspond to large values of D and B (K and ~). We have in- 

vestigated the behavior of the disturbances for arbitrary values of the parameters by inte- 
grating Eqs. (2.13)-(2.15) numerically according to the fourth-order Runge--Kutta method. 

The results of the numerical solution for large values of D and B corroborate the laws 
described above. For values of the parameters such that the period of the oscillations is 
commensurate with the characteristic rise time of the main flow, the numerical solution shows 
that the qualitative conclusions pertaining to large D and B remain valid in this situation 

as well. As an example, Figs. 3 and 4 show the waveform of the oscillations (a as a function 
of the dimensionless time t' = tlUl/Lo) for certain values of the parameters. All the curves 
in Figs. 3 and 4 are plotted for U = V, n = m = i, D = 50, and identical initial conditions 
(~ = S = 0, B = i). The dashed curves represent the functions ~(t') obtained using the lower 
convectional derivative (1.9) in (1.6). 

The curves in Figs. 3a-c illustrate how the nature of the oscillations depends on the 
viscosity B = 0.01, 0.i, 0.25 respectively for W = 0. The influence of W on the waveform is 
discerned from a comparison of Figs. 3c and 4a, and of Figs. 4b and c. As for ~ >>i (see 
Fig. 2), an increase in the relaxation time is a destabilizing factor. In all the curves 
there is a noticeable increase in the frequency of the oscillations with the passage of time 
(with decreasing L), as predicted by (2.21) and (2.29). In Figs. 4a-c, respectively, W = 
0.i, 0.i, 1 and B = 0.25, 5, 5. 

3. The finite-amplitude oscillations established after the threshold, L < L,, like the 
solution of the problem of the nature of the excitation of oscillations at L = L,, must be 
investigated on the basis of the complete nonlinear equations (1.2)-(1.8). It is natural to 
consider the solutions of these equations in the high-frequency limit, because the notion of 

steady-state oscillatory states presupposes smallness of the oscillation period relative to 
the characteristic time of the main flow. This limit is reached under the conditions 

D > > t ,  B>>I, (3.1) 

which are equivalent to (2.20), (2.22), and (2.25). 

Equations (1.2)-(1.8) are written in dimensionless variables measured relative to the 
corresponding quantities for the main flow 

t U I - - ~  I V2--vO 

u x - -  i u  I , ~ u - -  I g l  ' C ' T ' i j - -  N [ U I / L  o, ( 3 . 2 )  

E~j o eij - -  e~j. 

For values of L close to the threshold, solutions of the nonlinear equations are sought in 
the form of series in a small parameter e having the significance of the steady-state oscil- 
lation amplitude: 

! ~,  = ~r + ~2~(2) + . . . .  u~ = ~u{ ~) + ~ u {  ~) + . . . .  (3.3) 
t Ti j ^m(1) _ 2 T ( 2 )  t ~(i) _ 2 ~ ( 2 )  

�9 . ~ ~ ~ ~ j  �9 . , 

Besides (3.3), we write the formal expansion 

G = G,  + ~G 1 + e2G2 + . . . .  ( 3 . 4 )  
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which determines s, and the expansion for 

o = ~ ,  + ~ 1  + ~2~2 + . . . .  ( 3 . 5 )  

which determines the nonlinear frequency shift. The quantity @ [the dimensionless version of 
T ~ , see (2.28)] in the equations is expressed in terms of G by means of (2.12)and is there- 
fore also represented by a series in ~: 

0 = O, + s o l  + e202 + . . . .  

\ / 
S u b s t i t u t i n g  t h e  e x p r e s s i o n s  ( 3 . 3 ) - ( 3 . 6 )  i n t o  t h e  d i m e n s i o n l e s s  e q u a t i o n s  ( 1 . 2 ) - ( 1 . 8 )  

i n  e a c h  o r d e r  w i t h  r e s p e c t  to  E, we o b t a i n  a s y s t e m  o f  l i n e a r  d i f f e r e n t i a l  e q u a t i o n s ,  w h i c h  
c a n  be  w r i t t e n  i n  t h e  form 

NZ(h) = f(h), (3.7) 

where Z(k) is a column vector formed from the quantities ~(k) u(k), T(k) E(k) N is the 
' i ij ' ij ; 

matrix differential operator corresponding to the dimensionless homogeneous system (2.2)- 

(2.10) for G = G, and w = w,. The right-hand sides f(k) are expressed in terms of the quan- 
tities computed in the preceding orders with respect to ~. 

The system (3.7) is homogeneous in the first order with respect to E; the condition of 
periodicity of its solution yields relations (2.29) governing the quantities G, and ~,. The 
solution of the homogeneous system has the form (2.11); to simplify the calculations in the 
higher orders with respect to E we set Lo = Ro, U = V, and n = m. 

In the higher orders with respect to ~ the right-hand sides of (3.7) are not zero, and 
a periodic solution of the inhomogeneous system exists only under the condition that f(k) is 
orthogonal to the solution of the associated homogeneous system. This condition determines 

the constants G k and ~k in the expansions (3.4) and (3.5). The second-approximation equa- 
tions yield 

GI = ~i = 0; (3.8) 

from the third-approximation equation we determine the quantity 

G2= dO 

[the correction ~2 is absent in the limit (3.1)]. 

Restricting the expansion (3.4) to second-order terms in s, on the basis of (3.8) and 
(3.9) we find the dependence of the steady-state amplitude s on the instantaneous length of 
the sample: 

g = (G ~G__)I/~ ~ L - - L ,  1/2 :( Lfi___7, ) ~ (3.10) 

An analysis of expression (3.10) shows that the nature of the excitation of the oscillations 
upon attainment of the critical length L, depends on the sign of G2. For G2 < 0 the quan- 
tity s is real-valued in the domain L < L,, i.e., the amplitude of the oscillations increases, 
beginning with L : L,, in continuous fashion [soft excitation, corresponding to the function 
e(G), is represented qualitatively by curve 1 in Fig. 5]. In the opposite case G2 > 0, hard 
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excitation takes place, and at L = L, the amplitude of the oscillations jumps abruptly to 
a "finite" value [curve 2 in Fig. 5, the solid part corresponding to expression (3.10)]. 

The quantity G2 determined from (3.9) is shown in Fig. 6 as a function of the Weissen- 
berg number W for B/D = i, 5, i0, 20 (curves 1-4 respectively; the corresponding values of 
G, can be found in Fig. 2). It is seen that for small relaxation times soft excitation al- 
ways takes place (G2 < 0), but with an increase in W the quantity G2 can change sign. 

Next we give the expression obtained for G2 using the lower convectional derivative 
(1.9) in (1.6): 

3n~n~ [26~B (~W-- 0,) + D ] 
~z---- 

[here  the  q u a n t i t y  @ is  c a l c u l a t e d  in terms of the T O given  by e x p r e s s i o n  ( 2 . 3 0 ) ] .  An a n a l y -  
s i s  of  t h i s  e x p r e s s i o n  shows tha t  G2 i s  always n e g a t i v e ,  i . e . ,  in  t h i s  case  only  s o f t  ex- 
c i t a t i o n  takes  p l ace .  

l, 

2. 

3. 

4. 

5. 

6. 

7. 
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